

# CONTENTS —



| 1  | OVERVIEW                   |
|----|----------------------------|
| 2  | BENEFITS                   |
| 3  | TERMINOLOGY                |
| 4  | APPLICATIONS               |
| 5  | FOOTPATHS                  |
| 6  | DRIVEWAYS                  |
| 7  | RIGHTS OF WAY / JOALS      |
| 8  | CAR PARKS                  |
| 9  | CYCLEWAYS                  |
| 10 | TREE PROTECTION ZONES      |
| 11 | ARTIFICIAL LAWNS           |
| 12 | FOUNDATION WALL PROTECTION |
| 13 | ASPHALT INTERFACE          |
| 14 | SLOPES                     |
| 15 | EXTENDED WATER STORAGE     |
| 16 | PLANNING INSTALLATION      |
| 19 | MATERIALS                  |
| 22 | LOW CARBON                 |
| 23 | COLOURS                    |
| 24 | MAINTENANCE                |
| 25 | FAQS                       |

**OVERVIEW** 



# WHAT IS PERMCON?

Permoon is a continuous-pour permeable concrete system designed to manage stormwater on-site, reduce runoff and support groundwater recharge. Unlike standard concrete, Permoon has a high void content (typically 20-25%) that allows water to pass through the slab and into the ground below.

This makes it ideal for areas where stormwater management, land-use efficiency and environmental performance are important.

#### **How It Works**

The open structure of Permoon allows rainwater to:

- Soak through the concrete, reducing surface runoff.
- Filter out pollutants before water enters waterways.
- Recharge groundwater naturally mimicking undeveloped land.

This reduces the need for stormwater pits, tanks or rain gardens - and adds flexibility in site design.

#### **Properties**

- Infiltration 8,000 10,000mm/hour.
- · Compressive strength to 25MPa.
- Slip resistance P4 0v.45 0.54 BPN.
- Run-off coefficient 0.3.

#### **Installer Note**

This guide covers how to install Permoon's permeable concrete system correctly and safely. Always work in consultation with a qualified engineer, architect or landscape architect to ensure compliance with:

- · Local council rules.
- · Regulatory requirements.
- · Site-specific design conditions.

**Important**: Only trained and accredited installers should carry out installation of the Permoon system.

**PERMCON** 

1

## **BENEFITS**



Permoon delivers practical and environmental advantages across a range of project types.

## + REDUCES RAINFALL RUNOFF

With a runoff coefficient of 0.3, Permoon eases pressure on stormwater systems.



## + RECHARGES GROUNDWATER

Water filters through the slab and returns to the aquifer, just like in a natural landscape.



## - CONTROLS PEAK STORMWATER FLOWS

Detains water in the base layer and releases it slowly.



### + IMPROVES WATER QUALITY

Filters out up to 70% of heavy metals, hydrocarbons, organic debris and suspended solids.



## + PROTECTS SOIL HEALTH

Allows water, air and nutrients to pass through to the underlying soil, maintaining the conditions needed for life to thrive below the surface.



## - REDUCES SIZE OF RETENTION STRUCTURES

Stores water within the pavement system, freeing up usable land.



#### - REDUCES RUNOFF TEMPERATURE

Helps protect rivers, streams and aquatic ecosystems from temperature spikes.



#### + MAXIMISES SITE USAGE

In passive systems, Permoon may be considered equivalent to grass for design purposes.





PERMOON BENEFITS EXPLAINED.
SCAN QR CODE TO WATCH OUR VIDEO.

## **TERMINOLOGY**



## **WEARING COURSE**

The Permoon permeable concrete layer. Thickness

depends on the application.

## PERMEABLE BASECOURSE

An open-graded aggregate that supports the

wearing course and stores stormwater.

## EXTENDED PERMEABLE BASECOURSE

A deeper layer of open-

graded aggregate, used where larger volumes of stormwater need to be managed.

## **SUB BASE**

flows.

Sometimes referred to as a gravel raft. Typically GAP40 or GAP65. Used to create a stable platform for the Permoon system in low CBR situations (see below).

## SUB SURFACE DRAIN

Typically a 110mm Novaflo pipe or similar. Directs excess stormwater in a controlled fashion into the local stormwater network, reducing peak

## **FILTER CLOTH**

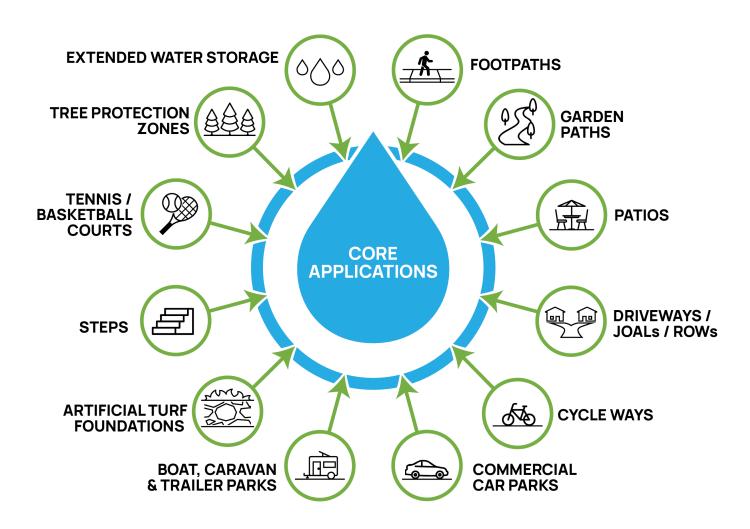
A non-woven geotextile that allows water to pass through into the sub grade and prevents soils from entering the basecourse.

## **SUB GRADE**

Undisturbed soil at the base of the Permoon system. The condition of this layer (CBR) determines the basecourse and sub base requirements.

## **GEOGRID**

Engineered polymeric materials with an open grid-like appearance. Used to reinforce the sub base layer in low CBR environments.


## **CBR**

California Bearing Ratio - a measure of the strength of the sub grade.



Common applications for Permcon are footpaths, rights-of-way, domestic driveways, joint-ownership access lanes, carparks, cycleways, private open spaces (including as a base for artificial grass), tree protection zones, balconies and patios.

The core applications of Permoon permeable concrete are illustrated in the graphic below. While the system remains fundamentally the same across all applications, the different variations are covered in the following pages.

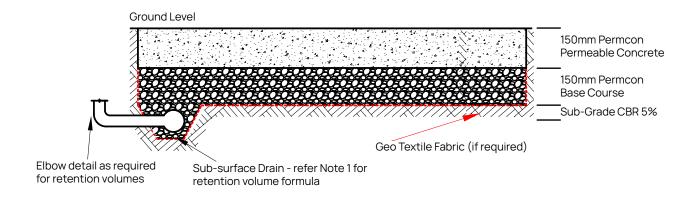




# FOOTPATHS (TYPICAL DESIGN)

# Ground Level 100mm Permcon Permeable Concrete 100mm Permcon Base Course Sub-Grade CBR 3%

**SURFACE/WEARING COURSE** – Typically poured at a thickness of 100mm Permcon permeable concrete.


**PERMEABLE BASE COURSE** – 100mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.

**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.

**SUB GRADE** – The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.



## DRIVEWAYS (TYPICAL DESIGN)

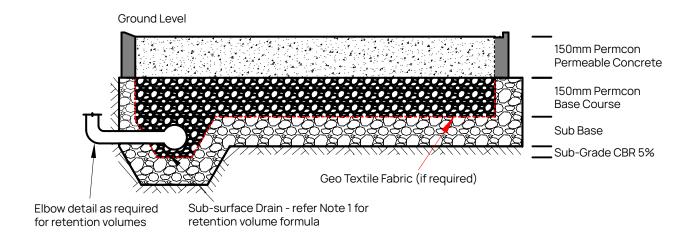


**SURFACE/WEARING COURSE** – Typically poured at a thickness of 150-200mm of Permcon permeable concrete.

**PERMEABLE BASE COURSE** – 150mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.

**SUB GRADE** – The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.

**SUB-SURFACE DRAIN** – Typically a 110mm Novaflo pipe or similar. Directs excess stormwater in a controlled fashion into the local stormwater network, reducing peak flows.


**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.





# RIGHTS-OF-WAY / JOINT-OWNERSHIP ACCESS LANES

(TYPICAL DESIGN)



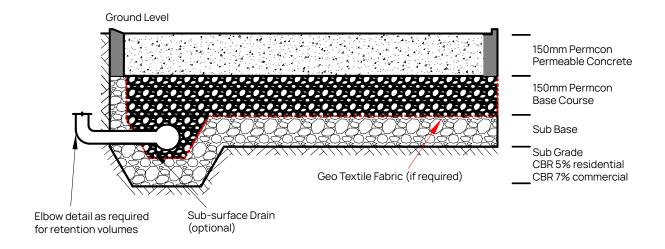
## **SURFACE/WEARING COURSE** - Typically poured at

a thickness of 150mm Permoon permeable concrete.

**PERMEABLE BASE COURSE** – 150mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.

**SUB BASE** – A GAP gravel raft to ensure a stable platform for the Permcon system with a minimum CBR of 5+.

**SUB GRADE** – The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.


**SUB-SURFACE DRAIN** – Typically a 110mm Novaflo pipe or similar. Directs excess stormwater in a controlled fashion into the local stormwater network, reducing peak flows.

**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.

Note 1: retention volume formular =  $a \times h \times 0.3$  a = area of paving m2 h = height between bottom of overflow outlet and base of form base course 0.3 = porosity of perm base course.



## CARPARKS (TYPICAL DESIGN)

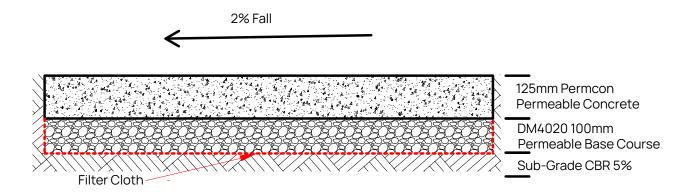


**SURFACE/WEARING COURSE** – Typically poured at a thickness of 150-200mm of Permcon permeable concrete. The determination of thickness for this layer should be made in consultation with a civil engineer and follow civil drainage specifications.

**PERMEABLE BASE COURSE** – 150mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.

**SUB BASE** – A GAP gravel raft to ensure a stable platform for the Permoon system with a minimum CBR of 5+.

**SUB GRADE** – The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.


**SUB-SURFACE DRAIN** – Typically a 110mm Novaflo pipe or similar. Directs excess stormwater in a controlled fashion into the local stormwater network, reducing peak flows.

**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.



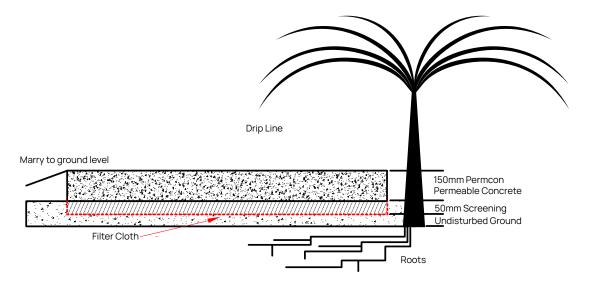


## CYCLEWAYS (TYPICAL DESIGN)



**SURFACE/WEARING COURSE** – Typically poured at 125mm thickness of Permcon permeable concrete.

**PERMEABLE BASE COURSE** – 100mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.


**SUB GRADE** – The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.

**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.



# TREE PROTECTION ZONES

(TYPICAL DESIGN)



Permoon is, in some circumstances, suitable for installation immediately adjacent to trees and tree root zones.

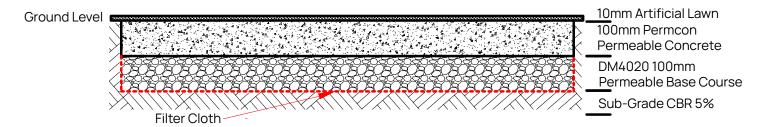
When installed properly, Permoon will contribute significantly to the long-term sustainability of the tree. Any installation that will cover a tree root zone should be designed in conjunction with an arborist and it is recommended that the advice of an engineer be sought before installation.

Permoon is typically poured at a thickness of 150mm over a filter cloth and 50mm screening level on top of the existing top soil. However, please note the following specific requirements:

#### 1. THE TREE PROTECTION ZONE SHOULD NOT BE EXCAVATED

This pertains only to installations surrounding trees and designed to specifically preserve the tree root zone.

#### 2. THE FOLLOWING CONDITIONS MUST BE MET


- The topsoil is not prone to settling/subsiding and;
- The maximum weight of vehicles is limited [le, residential light traffic/single unit residential driveways].





## **ARTIFICIAL LAWNS**

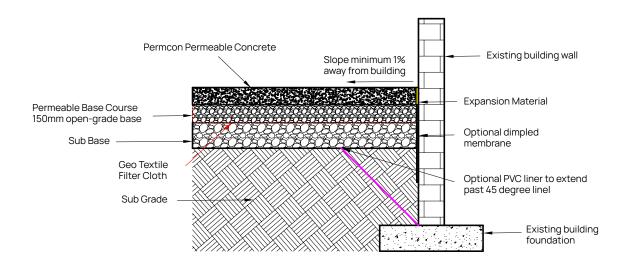
## (TYPICAL DESIGN)



**ARTIFICIAL LAWN** – Typically 10mm thick. Using permeable concrete underneath provides a permeable solution for basketball and tennis courts, and other artificial grass surfaces.

**SURFACE/WEARING COURSE** – The surface under the artificial grass is typically poured at a thickness of 100mm of Permoon permeable concrete.

**PERMEABLE BASE COURSE** – 100mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.


**SUB GRADE** - The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.

**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.



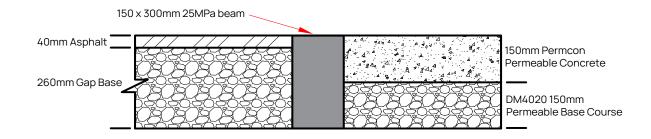
## FOUNDATION WALL PROTECTION

(TYPICAL DESIGN)



**SURFACE/WEARING COURSE** – Typically poured at a thickness of 100-150mm of Permcon permeable concrete. The determination of thickness for this layer should be made in consultation with a civil engineer and follow civil drainage specifications.

**PERMEABLE BASE COURSE** – 100-150mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.

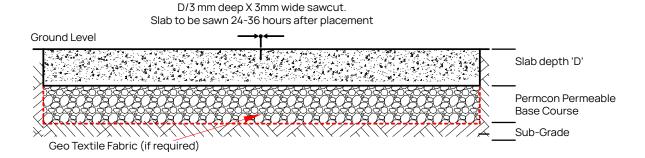

**SUB BASE** – A GAP gravel raft to ensure a stable platform for the Permcon system with a minimum CBR of 5+ for vehicular applications or 3+ for pedestrian applications.

**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.

**SUB GRADE** - The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.



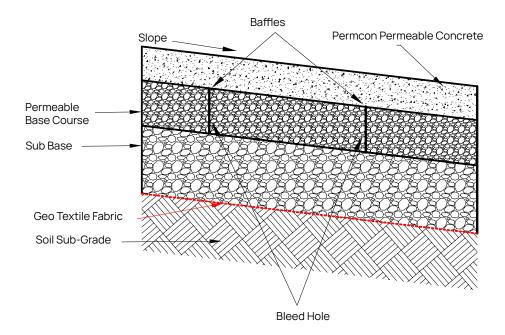
## ASPHALT INTERFACE (TYPICAL DESIGN)




**SURFACE/WEARING COURSE** - Typically poured at a thickness of 100-150mm of Permcon permeable concrete. The determination of thickness for this layer should be made in consultation with a civil engineer and follow civil drainage specifications.

**PERMEABLE BASE COURSE** – 100-150mm layer of washed drainage aggregate, depending on application; usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.

## SAW CUTTING (TYPICAL DESIGN)


Saw cutting is used to control drying shrinkage in concrete by creating contraction joints that encourage the slab to crack in a controlled manner. These joints allow horizontal movement at right angles to the cut, relieving internal stresses that could otherwise lead to random cracking.





## **SLOPES** (TYPICAL DESIGN)

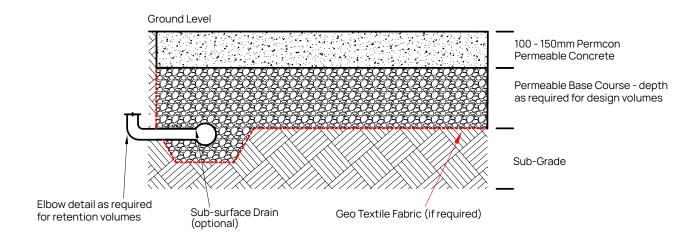
Maximum slopes before specific engineering required is 12%. For slopes over 5%, a baffle is recommended every 15m of slope length if the length exceeds 28m.



**SURFACE/WEARING COURSE** - Typically poured at a thickness of 100-150mm of Permcon permeable concrete. The determination of thickness for this layer should be made in consultation with a civil engineer and follow civil drainage specifications.

**PERMEABLE BASE COURSE** – 100-150mm layer of washed drainage aggregate, depending on application; usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable.

**SUB BASE** – A GAP gravel raft to ensure a stable platform for the Permcon system with a minimum CBR of 5+ for vehicular applications or 3+ for pedestrian applications.


**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.

**SUB GRADE** – The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.



## **EXTENDED WATER STORAGE**

## (TYPICAL DESIGN)



**SURFACE/WEARING COURSE** - Typically poured at a thickness of 100-150mm of Permcon permeable concrete. The determination of thickness for this layer should be made in consultation with a civil engineer and follow civil drainage specifications.

**PERMEABLE BASE COURSE** – 150mm layer of washed drainage aggregate, usually a Greywackie rock DM40/20 or similar. Normal GAP types of aggregate are not suitable. If higher water volumes are required to be retained in the permeable basecourse, additional depth can be added. Each 100mm will add 25L of water storage. The basecourse should be installed and compacted at maximum 150mm layers to ensure adequate compaction in the system.

**SUB-SURFACE DRAIN** – Typically a 110mm Novaflo pipe or similar. Directs excess stormwater in a controlled fashion into the local stormwater network, reducing peak flows.

**FILTER CLOTH** – A polypropylene fabric, which allows water to pass through. It also assists in preventing contamination of the sub base when surrounded by clay soil.

**SUB GRADE** – The undisturbed soil beneath the Permoon system. The condition of this layer (CBR) determines the basecourse requirements.



## **PLANNING & INSTALLATION**

Before installation, assess the site and understand how the Permoon system will manage runoff. On large areas, hydrological design may be required to meet runoff storage or discharge capacity. Ensure the following steps are completed in sequence before the job begins.

#### 1. MARK THE AREA

Mark out the area where Permoon will be installed. Install erosion or sediment control if needed.

#### 2. CONFIRM EDGE CONDITIONS

Check the type and height of all edging around the slab or pavement area.

#### 3. EXCAVATE TO DESIGN DEPTH

Excavate the sub base based on the expected traffic load. Use Table 1 and the calculated water storage volume to determine the correct depth for detention or infiltration systems.

| LOADING CONDITION                                                                                        | SUB GRADE CLASSIFICATION                                              |                                       |                                       |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------------------------|--|
|                                                                                                          | WEAK CBR < 5                                                          | MEDIUM CBR 6-10                       | STRONG CBR 10+                        |  |
| Residential Pedestrian Patio/Pathway Geotextile Filter Cloth                                             | 100mm permeable basecourse Class C                                    | 100mm permeable basecourse<br>Class B | 100mm permeable basecourse Class A    |  |
| Residential Light Traffic* Single Unit Residential Driveways Geotextile Filter Cloth                     | *CBR <3 requires specific design  150mm permeable basecourse  Class D | 150mm permeable basecourse Class C    | 150mm permeable basecourse Class B    |  |
| Residential Light to Medium Traffic<br>Multi Unit<br>Residential<br>Driveways<br>Geotextile Filter Cloth | CBR <5 requires specific design                                       | 150mm permeable basecourse Class D    | 150mm permeable basecourse Class C    |  |
| Public Footpath Low and High Impact Geotextile Filter Cloth                                              | 150mm permeable basecourse<br>Class D                                 | 150mm permeable basecourse<br>Class C | 150mm permeable basecourse<br>Class B |  |

Geotextile Fabrics

Class A - BIDIM A14 or similar Class C - BIDIM A29 or similar Class B - BIDIM A19 or similar Class D - BIDIM A39 or similar

Table 1



**Note:** Once the sub grade is exposed, you can quickly check the CBR by wetting the ground and walking across it. A clear, full imprint indicates a weak CBR; a heel imprint indicates a medium CBR; no imprint indicates a strong CBR. This process does not replace the need for an official geotechnical report. CBR can be accurately assessed using a Scala Penetrometer (*NZS* 4402:1986).

#### 4. PREPARE THE SUBGRADE

Once excavation is complete, the subgrade must be even, uniform and free of standing water, organic material or debris. If needed, apply a thin bedding sand layer to smooth out undulations before placing geotextile.

The subgrade should be compacted to the specified density and moisture content:

- Minimum 5% CBR for pedestrian areas and residential driveways.
- Minimum 10% CBR for vehicular areas.

Weak or saturated soils may require stabilisation. Compaction can reduce permeability, and opengraded basecourses may need underdrains.

**Note**: On sloping sites, water may resurface at low points. Crossflow can be encouraged using weirs, or storage capacity concentrated at the low point. Alternatively, a drainage coil can be used to divert water to another system.

#### 5. INSTALL SUB BASE AND UNDERDRAIN (IF REQUIRED)

If specified, lay a sub base layer over the area. If an underdrain is part of the design, install it with a 0.5% slope and filter sock (if required), then connect to the stormwater outlet with a watertight fit. Carefully backfill over the drain with 50mm basecourse.

#### **6. INSTALL GEOTEXTILE**

Place over the subgrade, or over the underdrain where applicable, to prevent clogging from sediment.

#### 7. PLACE PERMEABLE BASECOURSE

Lay clean, washed, open-graded permeable aggregate to the required depth and level. It must contain a minimum of 30% voids. Place another layer of geotextile over the basecourse if specified.



# **INSTALLATION**



#### 8. FORM UP

Set formwork to the correct height and shape. Ensure falls meet Building Code requirements.

#### 9. INSTALL PERMCON


Place Permoon permeable concrete in accordance with specifications. Only certified Permoon installers should perform this work.

#### **10. RESTORE THE SITE**

Clean up materials, reinstate surrounding areas and regrass disturbed ground. Remove sediment controls. Check that all underdrain connections to stormwater outlets are clear.

#### 11. ATTACHMENTS

Car stops and pool fencing can be installed through Permoon permeable concrete as per standard concrete.



## **MATERIALS**



The structural and hydraulic performance of the Permoon system depends on the correct specification and handling of all materials.

Each material component must meet defined grading, strength and permeability requirements. These directly influence load support, compaction, infiltration rate and long-term system function. This section outlines the required Permcon material properties, referencing relevant New Zealand standards and best practice for permeable pavements.

#### **BASE COURSE**

The basecourse layer must use clean, open-graded drainage aggregate – typically a crushed Greywacke such as DM40/20. Sub grades weaker than a CBR of 5 will require specific design.

- DM40/20 stores approx. 400L/m<sup>3</sup>.
- To allow for variation, use a working figure of 85% capacity.
- A 100mm thick layer stores roughly 34L/m<sup>2</sup>.

| PROPERTY   |                                               | STANDARD                                                               | TEST METHOD | RESULT                       |
|------------|-----------------------------------------------|------------------------------------------------------------------------|-------------|------------------------------|
| SOURCE     | Solid Density                                 | NZS 4407:1991                                                          | Test 3.7.2  | 2.72t/m³                     |
|            | Abrasion Resistance                           | NZS 4407:1991                                                          | Test 3.12   | ~11%                         |
|            | Weathering Quality                            | NZS 3111:1986                                                          | Test 15     | AA                           |
|            | Crushing Resistance                           | NZS 3111:1986                                                          | Test 14     | 450≥                         |
| PRODUCTION | Permeability                                  | Volume 2, Section 10.6 Method of soil laboratory testing by K. H. Head |             | k = 7.0 -3m/s                |
|            | Broken Face Content                           | NZS 4407:1991                                                          | Test 3.14   | 100%                         |
|            | Cleaness Value                                | NZS 3111:1986                                                          | Test 13     | 70≥                          |
| OTHER      | Maximum Dry Density                           | NZS 4402:1986                                                          | Test 4.2.2  | DM40/20 or similar~1.65 t/m³ |
|            |                                               |                                                                        |             | DM40/20 or similar~1.60 t/m³ |
|            | Maximum Dry Density                           | NZS 4402:1986                                                          | Test 4.1.1  | DM40/20 or similar~1.45 t/m³ |
|            |                                               |                                                                        |             | DM40/20 or similar~1.45 t/m³ |
|            | Total Voids % (From Maximum Dry Density Data) |                                                                        |             | >40%                         |

Table 2. Characteristics of Greywacke WPB12 and WPB40



## **MATERIALS**

| SIEVE ANALYSIS |           |               |               |  |  |  |  |
|----------------|-----------|---------------|---------------|--|--|--|--|
| SIEVE APERTURE | % PASSING | SPECIFIED MIN | SPECIFIED MAX |  |  |  |  |
| 53.0mm         | 100       | -             | -             |  |  |  |  |
| 37.5mm         | 100       | 100           | 100           |  |  |  |  |
| 26.5mm         | 83        | 65            | 85            |  |  |  |  |
| 19.0mm         | 25        | 20            | 50            |  |  |  |  |
| 13.2mm         | 3         | 0             | 25            |  |  |  |  |
| 9.5mm          | 1         | 0             | 10            |  |  |  |  |
| 6.7mm          | 0         | 0             | 5             |  |  |  |  |
| 4.75mm         | 0         | -             | -             |  |  |  |  |

Table 3. WPB40 grading envelope

#### PERMCON CONTINUOUS POUR PERMEABLE CONCRETE

A specifically designed mix with strict batching controls.

#### **GEOTEXTILE FILTER CLOTH**

Non-woven polypropylene fabric.

## **GEOGRID (SUB GRADE REINFORCEMENT)**

For pavement construction using geogrids over very soft subgrade (CBR below 5), it is recommended not to use vibrating compaction equipment. This is to reduce the possibility of 'livening' the sub grade and shifting soil particles into the basecourse before sufficient interlock has been achieved.

If the subgrade is livened as a result of over-compaction and/or excessive water, roading construction should be put on hold to allow for setting before proceeding with subsequent layers.

Installation should be in layers not more than 150mm thick to ensure adequate compaction.

Do not unload the sub base material directly onto geogrids. Use stockpiles instead.

Stockpiles of sub base material should be spread using mechanical plant, such as a loader with an opening bucket or an excavator bucket. The first layer should be statically rolled with a small number of passes using a light roller to create interlock between the geogrid and the aggregate.



If the pavement includes multiple geogrid layers, each additional layer should also be statically rolled with a small number of passes.

If construction is taking place in wet conditions and pumping is likely, a layer of geotextile should be placed beneath the geogrid.

Tri-axial geogrids, which have triangular apertures, may be laid either parallel to the road centre line or in the transverse direction. The overlap between adjacent rolls depends on the grading, sub base thickness and the stiffness of the sub grade.

Overlaps must be at least 300mm and no more than 600mm, unless otherwise specified by the engineer. Overlaps must remain in place during filling. This is usually done by placing small heaps of fill over the overlaps ahead of the main filling process. No traffic or site plant is permitted on the geogrid before the sub-base aggregate is placed.

Compaction of unbound materials used for sub base and road base layers must follow the specification for sub base aggregate.



## **LOW CARBON OPTIONS**



For proven performance with lower carbon content, Permcon CarbonLow™ offers a seamless upgrade, which can be specified and installed in exactly the same way as our standard Permcon mix.

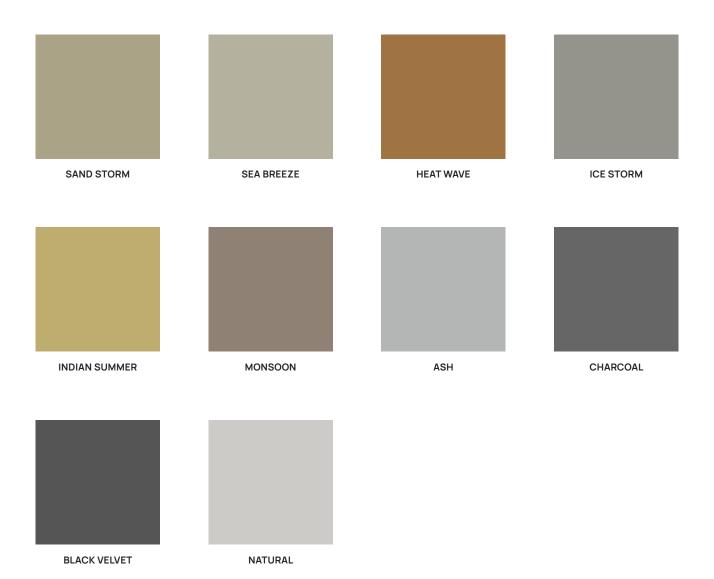
Designed to reduce embodied carbon by up to 30%, Permcon CarbonLow™ is a low-carbon version of our industry-proven permeable concrete, delivering the same strength, durability and permeability customers expect.

Carbon reduction is achieved by replacing up to 30% of Portland cement with fly ash or ground granulated blast-furnace slag (GGBFS) — two supplementary cementitious materials (SCMs) that enhance long-term performance.

Developed using lifecycle modelling aligned with EPD and ISO 14040/44 standards, Permcon CarbonLow™ supports climate-aligned infrastructure goals without requiring changes to your existing specifications or construction methods.

Permoon CarbonLow looks and performs the same as standard Permoon permeable concrete:






## **COLOURS**



Permoon permeable concrete is available in a variety of colours to create a more desirable and unique look to complement our natural and built environments.

Colour swatches are indicative only due to natural variances in materials and pitting of Permcon, which creates a shadowing affect that makes the actual colour look darker than swatches.



## **MAINTENANCE**



## RESIDENTIAL

## DRIVEWAYS, FOOTPATHS AND PATIOS

- Sweep regularly.
- In locations where leaves drop on the pavement, regular cleaning/blowing of leaves to stop organic sediment decomposing on the surface and joints. This is the most important activity in maintaining the Permoon permeable concrete paving system.
- Every year general cleaning/weed/moss control with a rotary head cleaner or hosing.
- Once a year, inspect after a rain event. If there is standing water or puddles, then permeability has been compromised. Contact the local Permoon representative for advice on restorative actions.

## COMMERCIAL

## CAR PARKS, ROWs, CYCLEWAYS

- Every year general inspection.
- Every year general cleaning with a sweep truck or similar.
- Every ten years check the permeability of the system. If the water stands for one hour or has a permeability rate of less than 250mm/hr, proceed with corrective maintenance.
- Once a year, inspect after a rain event. If there is standing water or puddles, then permeability has been compromised. Contact the local Permoon representative for advice on restorative actions.



FAQS



#### **HOW LONG DOES PERMEABLE CONCRETE LAST?**

When properly installed and maintained, permeable concrete typically lasts 15–20 years.

Re-sealing or resurfacing may be needed every 4 years depending on use and local conditions.

#### CAN PERMEABLE CONCRETE CLOG UP?

Yes — but regular sweeping or surface washing will help prevent it. If clogging occurs, an industrial vacuum can be used to clear the voids.

## HOW LONG DOES IT TAKE BEFORE THE SYSTEM CLOGS UP?

It depends on the site and the level of sediment in the run-off. Key factors include:

- · Whether the system is located in a suitable place.
- The amount of organic matter (eg, leaves) or clay present.
- The level of maintenance (sweeping is recommended).

Sites with high clay content or heavy organic loads should be avoided, or cleaned regularly.

#### WHAT IS THE VOID RATIO IN PERMEABLE CONCRETE?

It typically ranges from 15-30%. Permoon permeable concrete usually delivers a consistent 20-25%.

#### HOW CAN I TEST THE PERMEABILITY OF MY PAVEMENT SYSTEM?

Use ASTM C1701/C1701M-09: Standard Test Method for Infiltration Rate of In-Place Pervious Concrete. It's a simple test that can be performed on-site.

#### CAN PERMEABLE CONCRETE BE PUMPED INTO AN INSTALLATION?

No. Because it's a low-slump product, it cannot be pumped like traditional concrete. It must be placed manually or with adapted methods.

#### WHAT KIND OF AGGREGATES CAN I USE FOR THE BASE COURSE?

Use specifically designed drainage aggregates that remain stable when saturated. Standard GAP aggregates are not suitable and will lead to pavement failure.



# **CONTACT DETAILS**

## **NEW ZEALAND**

Phone: +64 27 224 1361

Email: info@permconnz.co.nz

Website: www.permconnz.co.nz

# **OUR MARKET FOCUS**

- DOMESTIC/RESIDENTIAL
  - COMMERCIAL
- COMMUNITY INFRASTRUCTURE
  - BUILDING & CONSTRUCTION



